Abstract

BackgroundThe human 6–16 and ISG12 genes are transcriptionally upregulated in a variety of cell types in response to type I interferon (IFN). The predicted products of these genes are small (12.9 and 11.5 kDa respectively), hydrophobic proteins that share 36% overall amino acid identity. Gene disruption and over-expression studies have so far failed to reveal any biochemical or cellular roles for these proteins.ResultsWe have used in silico analyses to identify a novel family of genes (the ISG12 gene family) related to both the human 6–16 and ISG12 genes. Each ISG12 family member codes for a small hydrophobic protein containing a conserved ~80 amino-acid motif (the ISG12 motif). So far we have detected 46 family members in 25 organisms, ranging from unicellular eukaryotes to humans. Humans have four ISG12 genes: the 6–16 gene at chromosome 1p35 and three genes (ISG12(a), ISG12(b) and ISG12(c)) clustered at chromosome 14q32. Mice have three family members (ISG12(a), ISG12(b1) and ISG12(b2)) clustered at chromosome 12F1 (syntenic with human chromosome 14q32). There does not appear to be a murine 6–16 gene. On the basis of phylogenetic analyses, genomic organisation and intron-alignments we suggest that this family has arisen through divergent inter- and intra-chromosomal gene duplication events. The transcripts from human and mouse genes are detectable, all but two (human ISG12(b) and ISG12(c)) being upregulated in response to type I IFN in the cell lines tested.ConclusionsMembers of the eukaryotic ISG12 gene family encode a small hydrophobic protein with at least one copy of a newly defined motif of ~80 amino-acids (the ISG12 motif). In higher eukaryotes, many of the genes have acquired a responsiveness to type I IFN during evolution suggesting that a role in resisting cellular or environmental stress may be a unifying property of all family members. Analysis of gene-function in higher eukaryotes is complicated by the possibility of functional redundancy between family-members. Genetic studies in organisms (e.g. Dictyostelium discoideum) with just one family member so far identified may be particularly helpful in this respect.

Highlights

  • The human 6–16 and ISG12 genes are transcriptionally upregulated in a variety of cell types in response to type I interferon (IFN)

  • Interferons (IFNs) are a family of secreted cytokines [1,2] that exert their biological activities by binding to specific cell membrane receptors to trigger a well characterised intracellular signalling pathway [3,4] culminating in the transcriptional induction of IFN stimulated genes (ISGs)

  • Using EMBL and Genbank searches, we have been able to compile a family of 46 genes related to the human 6–16 and human ISG12(a) genes

Read more

Summary

Introduction

The human 6–16 and ISG12 genes are transcriptionally upregulated in a variety of cell types in response to type I interferon (IFN). Interferons (IFNs) are a family of secreted cytokines [1,2] that exert their biological activities by binding to specific cell membrane receptors to trigger a well characterised intracellular signalling pathway [3,4] culminating in the transcriptional induction of IFN stimulated genes (ISGs). The DNA motifs close to or within the ISGs that mediate these responses are the 14 nt IFN Stimulated Response Elements (ISREs) and the 9 nt GAS elements for type I and type II IFNs, respectively. There remains some prominent ISGs, including 6–16 [15] and ISG12 [16] for which there are no known biochemical or cellular functions

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call