Abstract

Due to its efficient broad-spectrum antimicrobial activity, Trichoderma has been established as an internationally recognized biocontrol fungus. In this study, we found and identified a novel strain of Trichoderma asperellum, named GDFS1009. The mycelium of T. asperellum GDFS1009 exhibits a high growth rate, high sporulation capacity, and strong inhibitory effects against pathogens that cause cucumber fusarium wilt and corn stalk rot. T. asperellum GDFS1009 secretes chitinase, glucanase, and protease, which can degrade the cell walls of fungi and contribute to mycoparasitism. The secreted xylanases are good candidates for inducing plant resistance and enhancing plant immunity against pathogens. RNA sequencing (RNA-seq) and gas chromatography-mass spectrometry (GC-MS) showed that T. asperellum GDFS1009 produces primary metabolites that are precursors of antimicrobial compounds; it also produces a variety of antimicrobial secondary metabolites, including polyketides and alkanes. In addition, this study speculated the presence of six antimicrobial peptides via ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-QTOF-MS/MS). Future studies should focus on these antimicrobial metabolites for facilitating widespread application in the field of agricultural bio-control.

Highlights

  • Trichoderma spp. exhibits antagonistic effects against at least 18 genera and 29 species of pathogenic fungi, as well as a variety of pathogenic bacteria

  • Our study reveals the resistance-related molecular mechanisms of T. asperellum GDFS1009, including almost all of the biocontrol factors related to mycoparasitism, induced resistance, and antibiosis, using genomics, transcriptomics, and metabolomics approaches, as well as a series of physiological and biochemical analyses

  • NCBI BLAST followed by phylogenetic analysis of ITS sequences revealed that this novel strain shares the highest homology with T. asperellum G, followed by T. harzianum, T. longibrachiatum, T. hamatum, T. reesei, and T. virens, with Protocrea pallida used as an outgroup (Fig 1C)

Read more

Summary

Introduction

Trichoderma spp. exhibits antagonistic effects against at least 18 genera and 29 species of pathogenic fungi, as well as a variety of pathogenic bacteria. The biocontrol mechanisms of Trichoderma spp. primarily include competition and mycoparasitism, followed by the stimulation of plant resistance and immunity [1]. Trichoderma spp. is highly adaptive to the environment, and their growth rates are generally much faster than those of plant pathogens. Comprehensive evaluation of biocontrol efficacy of T. asperellum

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call