Abstract

In this study, a virus strain designated as HY12 was isolated from cattle with a disease of high morbidity and mortality in Jilin province. Biological and physiochemical properties showed that HY12 isolates is cytopathic with an extremely high infectivity. HY12 is resistant to treatment of organic solvent and acid, and unstable at 60°C for 1 h. Electron microscopy observation revealed the virus is an approximately 22–28 nm in diameter. The complete genome sequence of HY12 consists of 7416 nucleotides, with a typical picornavirus genome organization including a 5′-untranslated region (UTR), a large single ORF encoding a polyprotein of 2176 amino acids, and a 3′-UTR. Phylogenetic analysis clustered HY12 isolates to a new serotype/genotype within the clade of enterovirus E (formerly BEV-A). Alignment analysis revealed a unique insertion of 2 amino acid residues (NF) at the C-terminal of VP1 protein between aa 825 and 826, and several rare mutations in VP1 and VP4 of HY12 isolates in relation to known bovine enterovirus (BEV) strains. This is the first report of an enterovirus E in China, which is potentially associated with an outbreak in cattle with severe respiratory and enteric diseases.

Highlights

  • The genus enterovirus within the family picornaviridae consists of 9 species of enterovirus (A,B, C, D, E, F, G, H, J) and 3 species of rhinoviruses (A, B, C) based on the latest virus taxonomy[1]

  • We reported the identification of a novel enterovirus E isolates HY12 from a cattle herd with an outbreak of a severe respiratory disease and enteritis in Jilin Province

  • To rule out the possibility of toxin effect from the sample, the cultures with inoculum were blindly passaged at least 5 generations, and a similar cytopathic effect was observed for each passage, indicating the cytopathic effects (CPE) is the result of pathogen in the inoculum

Read more

Summary

Introduction

The genus enterovirus within the family picornaviridae consists of 9 species of enterovirus (A,B, C, D, E, F, G, H, J) and 3 species of rhinoviruses (A, B, C) based on the latest virus taxonomy[1]. Failure to experimentally reproduce bovine enterovirus infection in calves showing obvious clinical signs led to the conclusion that BEV is not significant agent in the cattle industry. This argument was seemly further supported by the findings that bovine enterovirus were detected in the contaminated waters adjacent to cattle herds; and the discovery that BEV-like sequences are present in shellfish, bottlenose dolphins, and in deer feces from the same geographical area [16,17,18,19,20].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call