Abstract
The process of new blood vessel growth from existing vasculature, known as angiogenesis, is critical to several pathological conditions, most notably cancer. Both MMP2, which degrades the extracellular matrix (ECM), and integrin alpha(V)beta(3), which contributes to endothelial cell attachment to the ECM, are critically involved in this process. Recent findings have shown that MMP2 is localized in an active form on the surface of invasive endothelial cells based on its ability to directly bind integrin alpha(V)beta(3), suggesting that disrupting this protein--protein interaction may represent a new target for the development of angiogenesis inhibitors. The screening of small molecule libraries led to the identification of compounds which disrupt the MMP2--alpha(V)beta(3) interaction in an in vitro binding assay. A prototypical inhibitor was further found to prevent the degradation of the protein matrix without directly inhibiting MMP2 activity or disrupting the binding of alpha(V)beta(3) to its classical ECM ligand, vitronectin. The synthesis and screening of analogues and substructures of this lead compound allowed the identification of requisite structural features for inhibition of MMP2 binding to alpha(V)beta(3). This led to the synthesis of a more water-soluble derivative which maintains the in vitro biological properties and has potent antiangiogenic and antitumor activity in vivo, validating the target as one useful for therapeutic intervention.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.