Abstract

DNA polymerase (DNApol) is highly conserved in all baculoviruses and plays an essential role in viral DNA replication. Previous results showed that the DNApol of the betabaculovirus Pieris rapae granulovirus (PiraGV) can localize in the nucleus. However, it is not clear how the DNApol is transported into the nucleus. Bioinformatic and GFP localization analysis showed that PiraGV DNApol contains a nuclear localization signal (NLS) at aa 4-25 (LFKRKLDEPPTDHTLVKAIKLS) of the N-terminus that does not match either the classical monopartite or the bipartite NLS consensus sequence. Multiple-point-substitution analysis confirmed that the NLS is required for transport of PiraGV DNApol into the nucleus. We also substituted the NLS of the PiraGV DNApol for that of the alphabaculovirus Spodoptera litura nuclear polyhedrosis virus (SpltNPV) DNApol. A viral growth curve and quantitative real-time PCR revealed that the substitution impaired viral DNA replication and resulted in a reduction in virus production. Together, our results show that PiraGV contains a novel NLS and that the NLS cannot efficiently replace that of SpltNPV DNApol for viral DNA synthesis and virus production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call