Abstract
Enterovirus 71 (EV-A71) infection causes severe hand-foot-and-mouth disease that leads to cardiopulmonary complications and death in young children under 5 years of age. Although there are available vaccines for EV-A71 C4, however, there are no efficient drugs for severe cases. Thus, there is an urgent need to find new direct-antiviral agents (DAAs) to control EV-A71 infection. In this study, we report our discovery of the EV-A71 capsid inhibitor PTC-209HBr, a small-molecule Bmi-1 inhibitor and an anticancer agent, and its derivatives that inhibit multiple enteroviruses with an EC50 at a submicromolar efficacy. The mechanism of action of PTC-209HBr was confirmed by time-of-addition, resistance selection and reverse genetics experiments, microscale thermophoresis (MST), viral binding and entry assays, coimmunoprecipitation (Co-IP) and immunofluorescence experiments (IF). Mechanistic studies indicated that PTC-209HBr inhibited EV-A71 infection by impeding the binding between VP1 and the receptor hSCARB2 during the early stage of EV-A71 infection through hindering viral entry into host cells. Collectively, these findings indicated that PCT-209HBr is a novel inhibitor of enteroviruses with a confirmed mechanism of action that can be further developed into EV-A71 DAAs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.