Abstract

BackgroundGenomic imprinting leads to maternal expression of IGF2R in both mouse and opossum. In mouse, the antisense long noncoding (lnc) RNA Airn, which is paternally expressed from the differentially methylated region (DMR) in the second intron of Igf2r, is required to silence the paternal Igf2r. In opossum, however, intriguingly, the DMR was reported to be in a different downstream intron (intron 11) and there was no antisense lncRNA detected in previous analyses. Therefore, clarifying the imprinting mechanism of marsupial IGF2R is of great relevance for understanding the origin and evolution of genomic imprinting in the IGF2R locus. Thus, the antisense lncRNA associated with the marsupial DMR can be considered as the ‘missing link’. In this study, we identified a novel antisense lncRNA, ALID, after detailed analysis of the IGF2R locus in an Australian marsupial, the tammar wallaby, Macropus eugenii, and compared it to that of the grey short-tailed opossum, Monodelphis domestica.ResultsTammar IGF2R showed maternal expression and had a maternally methylated CpG island (CGI) in intron 12 as well as a promoter CGI without differential methylation, but none in the second intron. Re-analysis of the IGF2R of opossum detected the CGI in intron 12, not intron 11, as previously reported, confirming that the DMR in intron 12 is conserved between these marsupials and so is the putative imprinting control region of marsupial IGF2R. ALID is paternally expressed from the middle of the DMR and is approximately 650 bp long with a single exon structure that is extremely short compared to Airn. Hence, the lncRNA transcriptional overlap of the IGF2R promoter, which is essential for the Igf2r silencing in the mouse, is likely absent in tammar. This suggests that fundamental differences in the lncRNA-based silencing mechanisms evolved in eutherian and marsupial IGF2R and may reflect the lack of differential methylation in the promoter CGI of marsupial IGF2R.ConclusionsOur study thus provides the best candidate factor for establishing paternal silencing of marsupial IGF2R without transcriptional overlap, which is distinct from the Igf2r silencing mechanism of Airn, but which may be analogous to the mode of action for the flanking Slc22a2 and Slc22a3 gene silencing in the mouse placenta.

Highlights

  • Genomic imprinting leads to maternal expression of IGF2R in both mouse and opossum

  • Our study provides the most likely candidate factor for establishing paternal silencing of marsupial IGF2R without transcriptional overlap, which is distinct from the Igf2r silencing mechanism of Airn, but may be analogous to mode of action for the flanking Slc22a3 silencing in the mouse placenta

  • Detection and determination of the structure of ALID lncRNA To compare the regulatory mechanisms of IGF2R imprinting between eutherians and marsupials, we examined whether there is any antisense lncRNA which is transcribed from intron 12 differentially methylated region (DMR) similar to Airn of the mouse Igf2r locus

Read more

Summary

Introduction

Genomic imprinting leads to maternal expression of IGF2R in both mouse and opossum. We identified a novel antisense lncRNA, ALID, after detailed analysis of the IGF2R locus in an Australian marsupial, the tammar wallaby, Macropus eugenii, and compared it to that of the grey short-tailed opossum, Monodelphis domestica. Genomic imprinting is an epigenetic mechanism which regulates parent-of-origin-dependent expression of imprinted genes. In higher vertebrates, it has been observed only in mammals and is limited to viviparous mammalian groups, the eutherians and marsupials [1,2,3,4,5,6] and appears to be absent in the egg-lying monotremes [7]. The study the divergent evolutionary pathways taken by therian mammals of imprinting mechanism would contribute to understanding how mammals have acquired complex epigenomic regulation because genomic imprinting has been an excellent model revealing many epigenetic mechanisms to control gene expression

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call