Abstract

In Arabidopsis (Arabidopsis thaliana), farnesylcysteine is oxidized to farnesal and cysteine by a membrane-associated thioether oxidase called farnesylcysteine lyase. Farnesol and farnesyl phosphate kinases have also been reported in plant membranes. Together, these observations suggest the existence of enzymes that catalyze the interconversion of farnesal and farnesol. In this report, Arabidopsis membranes are shown to possess farnesol dehydrogenase activity. In addition, a gene on chromosome 4 of the Arabidopsis genome (At4g33360), called FLDH, is shown to encode an NAD(+)-dependent dehydrogenase that oxidizes farnesol more efficiently than other prenyl alcohol substrates. FLDH expression is repressed by abscisic acid (ABA) but is increased in mutants with T-DNA insertions in the FLDH 5' flanking region. These T-DNA insertion mutants, called fldh-1 and fldh-2, are associated with an ABA-insensitive phenotype, suggesting that FLDH is a negative regulator of ABA signaling.

Highlights

  • In Arabidopsis (Arabidopsis thaliana), farnesylcysteine is oxidized to farnesal and cysteine by a membrane-associated thioether oxidase called farnesylcysteine lyase

  • No oxidation was observed in the presence of NADP+. These results indicate that, unlike the farnesol dehydrogenase detected in insect corpora allata glands and black rot fungus-infected sweet potato, the FLDHencoded farnesol dehydrogenase is specific for NAD+

  • Our goal was to establish the existence of a farnesol dehydrogenase enzyme in Arabidopsis, characterize the enzyme with respect to isoprenoid and cofactor specificity, identify the corresponding gene, and examine the regulation and function of the gene

Read more

Summary

Introduction

In Arabidopsis (Arabidopsis thaliana), farnesylcysteine is oxidized to farnesal and cysteine by a membrane-associated thioether oxidase called farnesylcysteine lyase. In Arabidopsis (Arabidopsis thaliana), the PLURIPETALA (PLP; At3g59380) and ENHANCED RESPONSE TO ABA1 (At5g40280) genes encode the a- and b-subunits of protein farnesyltransferase (PFT), respectively (Cutler et al, 1996; Pei et al, 1998; Running et al, 2004) These subunits form a heterodimeric zinc metalloenzyme that catalyzes the efficient transfer of a farnesyl group from farnesyl diphosphate to protein substrates with a C-terminal CaaX motif, where “C” is Cys, “a” is an aliphatic amino acid, and “X” is usually Met, Gln, Cys, Ala, or Ser (Fig. 1). Plant membranes have been shown to contain farnesol kinase, geranylgeraniol kinase, farnesyl phosphate kinase, and geranylgeranyl phosphate kinase activities (Fig. 1; Thai et al, 1999) These membraneassociated kinases differ with respect to nucleotide specificity, suggesting that they are distinct enzymes (i.e. farnesol kinase and geranylgeraniol kinase can use CTP, UTP, or GTP as a phosphoryl donor, whereas farnesyl phosphate kinase and geranylgeranyl phosphate kinase exhibit specificity for CTP as a phosphoryl donor). It is clear that these kinases convert farnesol and geranylgeraniol to their monophosphate and diphosphate forms for use in isoprenoid biosynthesis, including sterol biosynthesis and protein prenylation

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call