Abstract

Rhizobium leguminosarum is a soil bacterium with the ability to form nitrogen-fixing nodules on the roots of leguminous plants. Soil-dwelling, free-living R. leguminosarum often encounters desiccation stress, which impacts its survival within the soil. The mechanisms by which soil bacteria resist the effects of desiccation stress have been described. However, the role of the cell envelope in the desiccation tolerance mechanisms of rhizobia is relatively uncharacterized. Using a transposon mutagenesis approach, a mutant of R. leguminosarum bv. viciae was isolated that was highly sensitive to desiccation. The mutation is located in the ATP-binding protein of an uncharacterized ATP-binding cassette transporter operon (RL2975-RL2977). Exopolysaccharide accumulation was significantly lower in the mutant and the decrease in desiccation tolerance was attributed to the decreased accumulation of exopolysaccharide. In addition to desiccation sensitivity, the mutant was severely impaired in biofilm formation, an important adaptation used by soil bacteria for survival. This work has identified a novel transporter required for physiological traits that are important for the survival of R. leguminosarum in the rhizosphere environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.