Abstract

The low energy electronic structure of the copper dimer has been re-investigated using non-linear four-wave mixing spectroscopy and high level ab initio calculations. In addition to the measurement of the previously reported A, B, and C electronic states, a new state denoted A' is identified with T0 = 20 100.4090(16) cm-1 (63Cu2). Rotational analysis of the A'-X (0,0) and (1,0) transitions leads to the assignment of A' 1u. Ab initio calculations present the first theoretical description of the low energy states of the copper dimer in Hund's case (c) and confirm the experimental assignment. The discovery of this new low energy excited state emphasizes that spin-orbit coupling is significant in states with d-hole electronic configurations and resolves a decades-long mystery in the initial assignment of the A state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.