Abstract

ATP-sensitive potassium ion channels (KATP) are transmembrane proteins that modulate insulin release and muscle contraction. KATP channels are composed of two types of subunit, Kir6 and SUR, which exist in two and three isoforms respectively with different tissue distribution. In this work, we identify a previously undescribed ancestral vertebrate gene encoding a Kir6-related protein that we have named Kir6.3, which may not have a SUR binding partner, unlike the other two Kir6 proteins. Whereas Kir6.3 was lost in amniotes including mammals, it is still present in several early-diverging vertebrate lineages such as frogs, coelacanth, and rayfinned fishes. Molecular dynamics (MD) simulations using homology models of Kir6.1, Kir6.2, and Kir6.3 from the coelacanth Latimeria chalumnae showed that the three proteins exhibit subtle differences in their dynamics. Steered MD simulations of Kir6-SUR pairs suggest that Kir6.3 has a lower binding affinity for the SUR proteins than either Kir6.1 or Kir6.2. As we found no additional SUR gene in the genomes of the species that have Kir6.3, it most likely forms a lone tetramer. These findings invite studies of the tissue distribution of Kir6.3 in relation to the other Kir6 as well as SUR proteins to determine the functional roles of Kir6.3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call