Abstract

The MDM2 oncogene has been suggested as a molecular target for treating human cancers, including breast cancer. Most MDM2 inhibitors under development are targeting the MDM2-p53 binding, and have little or no effects on cancers without functional p53, such as advanced breast cancer. The present study was designed to develop a new class of MDM2 inhibitors that exhibit anticancer activity in MDM2-dependent and p53-independent manners. The selective MDM2 inhibitors were discovered by a computational structure-based screening, yielding a lead compound, termed JapA. We further found that JapA inhibited cell growth, decreased cell proliferation, and induced G2/M phase arrest and apoptosis in breast cancer cells through an MDM2-dependent mechanism, regardless of p53 status. It also inhibited the tumor growth and lung metastasis in breast cancer xenograft models without causing any host toxicity. Furthermore, JapA directly bound to MDM2 protein and reduced MDM2 levels in cancer cells in vitro and in vivo by promoting MDM2 protein degradation and inhibiting MDM2 transcription, which is distinct from the existing MDM2 inhibitors. In conclusion, JapA represents a new class of MDM2 inhibitor that exerts its anticancer activity through directly down-regulating MDM2, and might be developed as a novel cancer therapeutic agent.

Highlights

  • Breast cancer is the leading cause of cancer death among women in the United States and worldwide [1]

  • MB-231 triple negative breast cancer (TNBC) xenograft model, we examined the development of distant metastasis and found that JapA inhibited lung metastasis, with the incidence of lung metastasis being 5/7, 3/8, and 1/7 in the vehicle, 15 mg/kg/d JapA, and 30 mg/kg/d JapA-treated groups, respectively (Figure 3G)

  • We identified a new MDM2 inhibitor JapA and investigated its in vitro and in vivo anti-breast cancer activities and molecular mechanism of action

Read more

Summary

Introduction

Breast cancer is the leading cause of cancer death among women in the United States and worldwide [1]. Increasing evidence www.impactjournals.com/oncotarget suggests that the loss of tumor suppressors, such as p53 and BRCA, and the overexpression of oncogenes, such as MDM2 and NFAT1, play important roles in the progression of breast cancer to advanced disease [11,12,13,14,15,16,17,18]. These findings provide novel molecular targets for the treatment of breast cancer

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call