Abstract
Upon viral infection, retinoic acid-inducible gene-I (RIG-I)-like receptors detect viral foreign RNAs and transmit anti-viral signals via direct interaction with the downstream mitochondrial adaptor molecule, interferon (IFN)-β promoter stimulator-1 (IPS-1), to inhibit viral replication. Although IPS-1 is known to form prion-like oligomers on mitochondria to activate signaling, the mechanisms that regulate oligomer formation remain unclear. Here, we identified an autoinhibitory domain (AD) at amino acids 180–349 to suppress oligomerization of IPS-1 in a resting state and regulate activation of downstream signaling. Size exclusion chromatography (SEC) analysis demonstrated that AD was required to suppress auto-oligomerization of the caspase recruitment domain (CARD) of IPS-1 via intramolecular interactions. This was supported by the observation that cleavage of a peptide bond between IPS-1 CARD and AD by Tobacco Etch virus (TEV) protease relieved autoinhibition. Conversely, deletion of this domain from IPS-1 enhanced signal activation in IFN-reporter assays, suggesting that IPS-1 AD played a critical role in the regulation of IPS-1-mediated anti-viral signal activation. These findings revealed novel molecular interactions involved in the tight regulation of innate anti-viral immunity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.