Abstract

Tuberculosis remains a leading killer worldwide, and new approaches for its treatment and prevention are urgently needed. This effort will benefit greatly from a better understanding of gene regulation in Mycobacterium tuberculosis, particularly with respect to this pathogen's response to its host environment. We examined the behavior of two promoters from the divergently transcribed M. tuberculosis genes acr/hspX/Rv2031c (alpha-crystallin homolog) and Rv2032/acg (acr-coregulated gene) by using a promoter-GFP fusion assay in Mycobacterium bovis BCG. We found that Rv2032 is a novel macrophage-induced gene whose expression is coregulated with that of acr. Relative levels of intracellular induction for both promoters were significantly affected by shallow standing versus shaking bacterial culture conditions prior to macrophage infection, and both promoters were strongly induced under low oxygen conditions. Deletion analyses showed that DNA sequences within a 43-bp region were required for expression of these promoters under all conditions. Multiple sequence alignment and database searches performed with PROBE indicated that Rv2032 is one of eight M. tuberculosis genes of previously unknown function that belong to an unusual superfamily of classical nitroreductases, which may have a role for bacteria within the host environment. These findings show that mycobacterial culture conditions can greatly influence the results and interpretation of subsequent gene regulation experiments. We propose that these differences might be exploited for dissection of the regulatory factors that affect mycobacterial gene expression within the host.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.