Abstract

The spike (S) protein of coronaviruses, a type I membrane glycoprotein, is primarily responsible for entry into susceptible cells by binding with specific receptors on cells and mediating subsequent virus-cell fusion. The bovine coronavirus (BCoV) S protein is cleaved into two subunits, the N-terminal S1 and the C-terminal S2. The proteolytic cleavage site of S protein is highly conserved among BCoV strains and is located between amino acids 763 and 768 (KRRSRR). This study describes a single mutation in the S protein cleavage site of three Brazilian strains of BCoV detected in diarrheic fecal samples from calves naturally infected. The sequenced PCR products revealed that amino acid sequence of the cleavage site of our strains was KRRSSR, indicating a mutation at amino acid position 767 (R <FONT FACE=Symbol>®</FONT> S). This amino acid substitution occurred due to a single nucleotide substitution in the sequence of DNA corresponding to the proteolytic cleavage site, CGT to AGT. This is the first description of this nucleotide mutation (C to A), which resulted in the substitution of arginine to serine in the S cleavage site. In this study we speculated the probable effects of this mutation in the proteolytic cleavage site using the murine hepatitis coronavirus (MHV) as a comparative model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.