Abstract

BackgroundDiagnosis of fibromyalgia (FM), a chronic musculoskeletal pain syndrome characterized by generalized body pain, hyperalgesia and other functional and emotional comorbidities, is a challenging process hindered by symptom heterogeneity and clinical overlap with other disorders. No objective diagnostic method exists at present. The aim of this study was to identify changes in miRNA expression profiles (miRNome) of these patients for the development of a quantitative diagnostic method of FM. In addition, knowledge of FM patient miRNomes should lead to a deeper understanding of the etiology and/or symptom severity of this complex disease.MethodsGenome-wide expression profiling of miRNAs was assessed in Peripheral Blood Mononuclear Cells (PBMCs) of FM patients (N=11) and population-age-matched controls (N=10) using human v16-miRbase 3D-Gene microarrays (Toray Industries, Japan). Selected miRNAs from the screen were further validated by RT-qPCR. Participating patients were long term sufferers (over 10 years) diagnosed by more than one specialist under 1990 American College of Rheumatology criteria.ResultsMicroarray analysis of FM patient PBMCs evidenced a marked downregulation of hsa-miR223-3p, hsa-miR451a, hsa-miR338-3p, hsa-miR143-3p, hsa-miR145-5p and hsa-miR-21-5p (4-fold or more). All but the mildest inhibited miRNA, hsa-miR-21-5p, were validated by RT-qPCR. Globally, 20% of the miRNAs analyzed (233/1212) showed downregulation of at least 2-fold in patients. This might indicate a general de-regulation of the miRNA synthetic pathway in FM. No significant correlations between miRNA inhibition and FM cardinal symptoms could be identified. However, the patient with the lowest score for mental fatigue coincided with the mildest inhibition in four of the five miRNAs associated with the FM-group.ConclusionsWe propose a signature of five strikingly downregulated miRNAs (hsa-miR223-3p, hsa-miR451a, hsa-miR338-3p, hsa-miR143-3p and hsa-miR145-5p) to be used as biomarkers of FM. Validation in larger study groups is required before the results can be transferred to the clinic.

Highlights

  • Fibromyalgia (FM) (ICD-10 diagnosis code M79.7) is defined as a chronic disorder of unknown etiology characterized by low pain threshold, stiffness and tenderness in the muscles of neck, shoulders, back, hips, arms, and legs, usually accompanied by headaches, fatigue, sleep disturbances, memory loss and painful menstruation [1,2]

  • Genome-wide expression profiling of miRNAs was assessed in Peripheral Blood Mononuclear Cells (PBMCs) of FM patients (N=11) and population-age-matched controls (N=10) using human v16-miRbase 3D-Gene microarrays (Toray Industries, Japan)

  • Microarray analysis of FM patient peripheral blood mononuclear cells (PBMCs) evidenced a marked downregulation of hsamiR223-3p, hsa-miR451a, hsa-miR338-3p, hsa-miR143-3p, hsa-miR145-5p and hsa-miR21-5p (4-fold or more)

Read more

Summary

Introduction

Fibromyalgia (FM) (ICD-10 diagnosis code M79.7) is defined as a chronic disorder of unknown etiology characterized by low pain threshold, stiffness and tenderness in the muscles of neck, shoulders, back, hips, arms, and legs, usually accompanied by headaches, fatigue, sleep disturbances, memory loss and painful menstruation [1,2]. The FM diagnosis is made solely on clinical grounds [1], as no validated biological markers associated with the disease have been identified. Diagnosis of fibromyalgia (FM), a chronic musculoskeletal pain syndrome characterized by generalized body pain, hyperalgesia and other functional and emotional comorbidities, is a challenging process hindered by symptom heterogeneity and clinical overlap with other disorders. The aim of this study was to identify changes in miRNA expression profiles (miRNome) of these patients for the development of a quantitative diagnostic method of FM. Knowledge of FM patient miRNomes should lead to a deeper understanding of the etiology and/or symptom severity of this complex disease

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call