Abstract

Motivated by the recent experimental realization of single-layer two-dimensional MnSe [ACS Nano2021, 15, 13794–13802], structural, magnetic, elastic, vibrational, and electronic properties of single-layer MnSe are investigated by using density functional theory-based calculations. Among four different magnetic phases, namely, ferromagnetic (FM) and Náșœel-, zigzag-, and stripy-antiferromagnetic (AFM) phases, the Náșœel-AFM structure is found to be the energetically most favorable phase. Structural optimizations show the formation of in-plane anisotropy within the structures of zigzag- and stripy-AFM phases in single-layer MnSe. For the dynamically stable four magnetic phases, predicted Raman spectra reveal that each phase exhibits distinctive vibrational features and can be distinguished from each other. In addition, the elastic constants indicate the mechanical stability of each magnetic phase in single-layer MnSe and reveal the soft nature of each phase. Moreover, electronic band dispersion calculations show the indirect band gap semiconducting nature with varying electronic band gap energies for all magnetic phases. Furthermore, the atomic orbital-based density of states reveals the existence of out-of-plane orbitals dominating the top valence states in zigzag- and stripy-AFM phases, giving rise to the localized states. The stability of different magnetic phases and their distinct vibrational and electronic properties make single-layer MnSe a promising candidate for nanoelectronic and spintronic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call