Abstract

ABSTRACTListeria monocytogenes is a foodborne Gram-positive bacterial pathogen, and many of its virulence factors are either secreted proteins or proteins covalently or noncovalently attached to the cell wall. Previous work has indicated that noncovalently attached proteins with GW (glycine-tryptophan) domains are retained in the cell wall by binding to the cell wall polymer lipoteichoic acid (LTA). LTA is a glycerol phosphate polymer, which is modified in L. monocytogenes with galactose and d-alanine residues. We identified Lmo0933 as the cytoplasmic glycosyltransferase required for the LTA glycosylation process and renamed the protein GtlA, for glycosyltransferase LTA A. Using L. monocytogenes mutants lacking galactose or d-alanine modifications or the complete LTA polymer, we show that GW domain proteins are retained within the cell wall, indicating that other cell wall polymers are involved in the retention of GW domain proteins. Further experiments revealed peptidoglycan as the binding receptor as a purified GW domain fusion protein can bind to L. monocytogenes cells lacking wall teichoic acid (WTA) as well as purified peptidoglycan derived from a wild-type or WTA-negative strain. With this, we not only identify the first enzyme involved in the LTA glycosylation process, but we also provide new insight into the binding mechanism of noncovalently attached cell wall proteins. IMPORTANCE Over the past 20 years, a large number of bacterial genome sequences have become available. Computational approaches are used for the genome annotation and identification of genes and encoded proteins. However, the function of many proteins is still unknown and often cannot be predicted bioinformatically. Here, we show that the previously uncharacterized Listeria monocytogenes gene lmo0933 likely codes for a glycosyltransferase required for the decoration of the cell wall polymer lipoteichoic acid (LTA) with galactose residues. Using L. monocytogenes mutants lacking LTA modifications or the complete polymer, we show that specific cell wall proteins, often associated with virulence, are retained within the cell wall, indicating that additional cell wall polymers are involved in their retention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.