Abstract

Mast cell leukemia (MCL) is a highly fatal malignancy characterized by devastating expansion of immature mast cells in various organs. Although considered a stem cell disease, little is known about MCL-propagating neoplastic stem cells. We here describe that leukemic stem cells (LSCs) in MCL reside within a CD34+/CD38− fraction of the clone. Whereas highly purified CD34+/CD38− cells engrafted NSGhSCF mice with fully manifesting MCL, no MCL was produced by CD34+/CD38+ progenitors or the bulk of KIT+/CD34− mast cells. CD34+/CD38− MCL cells invariably expressed CD13 and CD133, and often also IL-1RAP, but did not express CD25, CD26 or CLL-1. CD34+/CD38− MCL cells also displayed several surface targets, including CD33, which was homogenously expressed on MCL LSC in all cases, as well as the D816V mutant form of KIT. Whereas CD34+/CD38− cells were resistant against single drugs, exposure to combinations of CD33-targeting and KIT-targeting drugs resulted in LSC-depletion and markedly reduced engraftment in NSGhSCF mice. Together, MCL LSCs are CD34+/CD38− cells that express distinct profiles of markers and target antigens. Characterization of MCL LSCs should facilitate their purification and should support the development of LSC-eradicating curative treatment approaches in this fatal type of leukemia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call