Abstract

A johnsongrass population from a cotton field in northern Greece along with a population from the university farm (“Control”) were evaluated for resistance to the herbicide quizalofop; cross-resistance to cycloxydim, propaquizafop, and fluazifop (acetyl coenzyme A [CoA] carboxylase [ACCase]-inhibiting herbicides), and multiple resistance to nicosulfuron (acetolactate synthase [ALS]-inhibiting herbicides). In greenhouse experiments, the application of four times the recommended rates of quizalofop and propaquizafop to suspected resistant rhizomatous plants resulted in 4 and 5% growth reduction, respectively. However, the growth of suspected resistant seedlings was reduced by 54 and 28% after the application of two times the recommended rate of the same herbicides. In contrast, the application of quizalofop and propaquizafop at recommended rates on rhizomatous plants and seedlings of the Control population reduced their growth by 97 to 100%. Also, the growth reduction of both populations by the application of cycloxydim, fluazifop, and nicosulfuron at recommended rates ranged from 93 to 100%. In the field experiment, quizalofop and propaquizafop applied at four times the recommended rate reduced growth of the suspected resistant population by 9 and 18%, respectively, whereas the recommended rate of fluazifop gave a 94% growth reduction of this weed. The herbicide rate required for 50% growth reduction (GR50) values for rhizomatous plants of the suspected resistant population were 0.90 and 2.465 kg ai/ha for quizalofop and propaquizafop, respectively, whereas the correspondingGR50values for the seedlings were 0.074 and 0.185 kg ai/ha. These results indicate that a johnsongrass population developed cross-resistance to quizalofop and propaquizafop, but did not evolve cross-resistance to cycloxydim and fluazifop or multiple resistance to nicosulfuron.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.