Abstract
Ascorbic acid (AsA) is an important antioxidant protecting plant against environmental stresses. L-galactono-1,4-lactone dehydrogenase (GLDH) is a key enzyme in AsA synthesis pathway. To investigate the roles of AsA in mitigating high light (HL) damage, Arabidopsis GLDH mutants SALK_060087 and SALK_008236 with altered GLDH-expression were screened for homozygotes. No homozygotes were identified from SALK_060087, but most individuals of the SALK_008236 line (GLDH-236OE) were GLDH-overexpressing homozygous mutants accumulating more AsA than wild type (WT). An investigation of the physiological responses to HL demonstrated that the chlorophyll fluorescence parameters were significantly higher in GLDH-236OE than that in WT after 14-d HL. The degradation of photosynthetic pigment in WT was more severe than that in GLDH-236OE. GLDH-236OE accumulated more AsA, anthocyanins, flavonoids, and phenolics, while WT accumulated more reactive oxygen species (ROS) during HL. Our results suggest that GLDH-236OE have lesser sensitivity and higher tolerance to HL due to a higher capacity to eliminate ROS, absorb extra light, and dissipate thermal energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.