Abstract

BackgroundExternal ripening in Citrus fruits is morphologically characterized by a colour shift from green to orange due to the degradation of chlorophylls and the accumulation of carotenoid pigments. Although numerous genes coding for enzymes involved in such biochemical pathways have been identified, the molecular control of this process has been scarcely studied. In this work we used the Citrus clementina mutants 39B3 and 39E7, showing delayed colour break, to isolate genes potentially related to the regulation of peel ripening and its physiological or biochemical effects.ResultsPigment analyses revealed different profiles of carotenoid and chlorophyll modification in 39B3 and 39E7 mutants. Flavedo from 39B3 fruits showed an overall delay in carotenoid accumulation and chlorophyll degradation, while the flavedo of 39E7 was devoid of the apocarotenoid β-citraurin among other carotenoid alterations. A Citrus microarray containing about 20,000 cDNA fragments was used to identify genes that were differentially expressed during colour change in the flavedo of 39B3 and 39E7 mutants respect to the parental variety. The results highlighted 73 and 90 genes that were respectively up- and down-regulated in both mutants. CcGCC1 gene, coding for a GCC type transcriptional factor, was found to be down-regulated. CcGCC1 expression was strongly induced at the onset of colour change in the flavedo of parental clementine fruit. Moreover, treatment of fruits with gibberellins, a retardant of external ripening, delayed both colour break and CcGCC1 overexpression.ConclusionsIn this work, the citrus fruit ripening mutants 39B3 and 39E7 have been characterized at the phenotypic, biochemical and transcriptomic level. A defective synthesis of the apocarotenoid β-citraurin has been proposed to cause the yellowish colour of fully ripe 39E7 flavedo. The analyses of the mutant transcriptomes revealed that colour change during peel ripening was strongly associated with a major mobilization of mineral elements and with other previously known metabolic and photosynthetic changes. The expression of CcGCC1 was associated with peel ripening since CcGCC1 down-regulation correlated with a delay in colour break induced by genetic, developmental and hormonal causes.

Highlights

  • External ripening in Citrus fruits is morphologically characterized by a colour shift from green to orange due to the degradation of chlorophylls and the accumulation of carotenoid pigments

  • Whereas internal maturation in the flesh is accompanied by an increase in the content of solutes and a decrease in acidity, external maturation is typically characterized by a change in colour from green to orange caused by the concomitant catabolism of chlorophylls and the synthesis of carotenoids [2,3,4]

  • Delay of colour change in 39B3 and 39E7 mutants Mutants 39B3 and 39E7 showing delayed fruit colour break for several consecutive years were obtained from a population of near 10,000 Citrus clementina plants mutagenized by fast neutrons irradiation

Read more

Summary

Introduction

External ripening in Citrus fruits is morphologically characterized by a colour shift from green to orange due to the degradation of chlorophylls and the accumulation of carotenoid pigments. Whereas internal maturation in the flesh is accompanied by an increase in the content of solutes and a decrease in acidity, external maturation is typically characterized by a change in colour from green to orange caused by the concomitant catabolism of chlorophylls and the synthesis of carotenoids [2,3,4]. Ethylene-induced chlorophyllase activity and gene expression has been negatively related to chlorophyll content suggesting the involvement of the enzyme in colour breakdown of flavedo [8,9,10]. Citrus genes coding for enzymes involved in the synthesis and modification of carotenoids have been previously isolated and their evolution during natural and ethylene-induced ripening described [12,13,14,15,16]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call