Abstract

The characterization of friction coefficients at the tool-chip-workpiece interface remains an issue. This paper aims to identify a friction model able to describe the friction coefficient at this interface during the dry cutting of an AISI1045 with TiN coated carbide tools. A new tribometer has been designed in order to reach relevant values of pressures and sliding velocities. This set-up is based on a modified pin-on-ring system. Additionally a numerical model simulating the frictional test has been associated in order to quantify average friction coefficients around the spherical pin, from the standard macroscopic data provided by the experimental system. A range of cutting speeds has been investigated. It has been shown that the friction coefficient is very much dependant on the sliding velocity. A new friction model has been identified based on the average local sliding velocity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.