Abstract
Uterine corpus endometrial carcinoma (UCEC) is often diagnosed at an early clinical stage based on abnormal vaginal bleeding. However, the prognosis of UCEC is poor. The present study was conducted to identify novel tumor grade-related genes with the potential to predict the prognosis and progression of UCEC. A total of three gene expression microarray datasets were downloaded from the Gene Expression Omnibus database, and one RNA-sequencing dataset with corresponding clinical information of patients with UCEC was obtained from The Cancer Genome Atlas database. In summary, 1,447 differentially expressed genes (DEGs) were identified between endometrial cancerous tissues and normal endometrial tissues. Weighted gene co-expression network analysis was performed to assess the associations between DEGs and clinical traits. In total, five genes were found to be highly associated with the tumorigenesis and prognosis of UCEC. Among them, BUB1 mitotic checkpoint serine/threonine kinase B, cyclin B1, cell-division cycle protein 20 and non-SMC condensing I complex subunit G were involved in cell cycle regulation pathways, and DLG-associated protein 5 was involved in the Notch receptor 3 signaling pathway based on functional enrichment analyses. Of the five genes, four were highly expressed in endometrial cancerous tissues compared with normal endometrial tissues at the protein level. In addition, the higher expression of these genes predicted a higher tumor grade and worse overall survival. In conclusion, the present study revealed a 5-gene signature that can be used to predict the progression of UCEC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.