Abstract

Although human and mouse genetics have largely contributed to the better understanding of the mechanisms underlying skeletogenesis, much more remains to be uncovered. In this regard alternative and complementary systems have been sought and cell systems capable of in vitro calcification have been developed to study the mechanisms underlying bone formation. In gilthead seabream (Sparus aurata), a gene coding for an unknown protein that is strongly up-regulated during extracellular matrix (ECM) mineralization of a pre-osteoblast cell line was recently identified as a potentially important player in bone formation. In silico analysis of the deduced protein revealed the presence of domains typical of short-chain dehydrogenase/reductases (SDR). Closely related to carbonyl reductase 1, seabream protein belongs to a novel subfamily of SDR proteins with no orthologs in mammals. Analysis of gene expression by qPCR confirmed the strong up-regulation of sdr-like expression during in vitro mineralization but also revealed high expression levels in calcified tissues. A possible role for Sdr-like in osteoblast and bone metabolism was further evidenced through (i) the localization by in situ hybridization of sdr-like transcript in pre-osteoblasts of the operculum and (ii) the regulation of sdr-like gene transcription by Runx2 and retinoic acid receptor, two regulators of osteoblast differentiation and mineralization. Expression data also indicated a role for Sdr-like in gastrointestinal tract homeostasis and during gilthead seabream development at gastrulation and metamorphosis. This study reports a new subfamily of short-chain dehydrogenases/reductases in vertebrates and, for the first time, provides evidence of a role for SDRs in bone metabolism, osteoblast differentiation and/or tissue mineralization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call