Abstract

Many bacteria respond to a lack of iron in the environment by synthesizing siderophores, which act as iron-scavenging compounds. Fluorescent pseudomonads synthesize strain-specific but chemically related siderophores called pyoverdines or pseudobactins. We have investigated the mechanisms by which iron controls expression of genes involved in pyoverdine metabolism in Pseudomonas aeruginosa. Transcription of these genes is repressed by the presence of iron in the growth medium. Three promoters from these genes were cloned and the activities of the promoters were dependent on the amounts of iron in the growth media. Two of the promoters were sequenced and the transcriptional start site were identified by S1 nuclease analysis. Sequences similar to the consensus binding site for the Fur repressor protein, which controls expression of iron-repressible genes in several gram-negative species, were not present in the promoters, suggesting that they are unlikely to have a high affinity for Fur. However, comparison of the promoter sequences with those of iron-regulated genes from other Pseudomonas species and also the iron-regulated exotoxin gene of P. aeruginosa allowed identification of a shared sequence element, with the consensus sequence (G/C)CTAAAT-CCC, which is likely to act as a binding site for a transcriptional activator protein. Mutations in this sequence greatly reduced the activities of the promoters characterized here as well as those of other iron-regulated promoters. The requirement for this motif in the promoters of iron-regulated genes of different Pseudomonas species indicates that similar mechanisms are likely to be involved in controlling expression of a range of iron-regulated genes in pseudomonads.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.