Abstract

Vinblastine, at concentrations above approximately 1 to 2 μ m, causes depolymerization of steady-state bovine brain microtubules in vitro by a fraying of microtubule ends into protofilament-like spirals. Microtubule depolymerization is associated with the binding of vinblastine in approximately molar stoichiometry to tubulin in microtubules with apparent low affinity, as determined by binding experiments with radiolabeled vinblastine and by the ability of vinblastine to inhibit DEAE-dextran decoration of microtubule surfaces. Our data suggest that depolymerization occurs by a propagated mechanism, initially involving binding of vinblastine to a limited number of available sites on microtubule surfaces. This appears to cause loosening of protofilament associations which results in the exposure of new vinblastine-binding sites. Additional vinblastine binding in turn results in further loosening of protofilament associations. Such loosening, when it occurs at microtubule ends, results in protofilament-like splaying and end-wise depolymerization. Microtubule depolymerization appears mechanistically distinct from inhibition of microtubule polymerization by the drug, which is associated with the binding of vinblastine to small numbers of high-affinity binding sites on tubulin at one or both microtubule ends.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call