Abstract

Growth-blocking peptide (GBP) and stress-responsive peptide (SRP) are insect cytokines whose expression levels are elevated by various stressful conditions such as parasitization and high or low temperatures. Both GBP and SRP are synthesized as precursors and released into the hemolymph, where they are enzymatically processed to active peptides. Injection of active GBP or SRP into early last instar larvae elicits a reduction in feeding and consequent growth retardation in the armyworm Mythimna separata. Although such functions are thought to benefit insects under stressful conditions by affecting their physiologies and behaviors, the relationship between GBP and SRP remains elusive. Here we show that heat stress-induced reactive oxygen species (ROS) elevated hemolymph GBP, which activated SRP transcription and increased the SRP concentration in the hemolymph. Injection of both GBP and SRP elevated hemolymph antioxidant levels. We found that simultaneous increases in both active cytokines occurred in the larval hemolymph from 2 to 3 h after heat stress or H2O2 injection, suggesting a synergic action of the two factors. This speculation was confirmed by demonstrating that co-injection of GBP and SRP caused a more severe reduction in appetite and growth retardation than injection of an individual peptide alone. However, injection of GBP together with SRP did not elevate SRP expression at all, indicating the effect of negative feedback regulation. Furthermore, SRP RNAi larvae showed higher body weights compared to controls, and GBP-induced growth retardation was partially abrogated in SRP RNAi larvae. These results led us to conclude that GBP is an upstream cytokine in the regulation of SRP expression and that these cytokines synergistically retard larval growth by repressing feeding activities when insects are exposed to stress conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call