Abstract
BackgroundIndividuals with acute / early HIV-1 infection are often unaware that they are infected with HIV-1 and may be involved in high-risk behavior leading to transmission of HIV-1. Identifying individuals with acute / early HIV-1 infection is critical to prevent further HIV-1 transmission, as diagnosis can lead to several effective HIV-1 prevention strategies. Identification of disease-stage specific non-viral host biomarkers would be useful as surrogate markers to accurately identify new HIV-1 infections. The goal of this study was to identify a panel of host derived plasma long non-coding RNAs (lncRNAs) that could serve as prognostic and predictive biomarkers to detect early/acute HIV-1 infection.MethodsA total of 84 lncRNAs were analyzed in sixteen plasma samples from HIV-1 infected individuals and four healthy controls using the lncRNA PCR-array. Twenty-one lncRNAs were selected and validated in 80 plasma samples from HIV-1 infected individuals [HIV-1 infected patients in the eclipse stage (n = 20), acute stage (n = 20), post-seroconversion p31 negative stage (n = 20), and post-seroconversion p31 positive stage (n = 20) of infection] and 20 healthy controls. The validation study results were used to develop a plasma lncRNA panel that was evaluated in the panel test phase to detect early/acute HIV-1 infection in 52 independent samples.ResultsWe identified a lncRNA panel (Pmodel−I) containing eight lncRNAs (DISC2, H19, IPW, KRASP1, NEAT1, PRINS, WT1-AS and ZFAS1) that could distinguish HIV-1 infection from healthy controls with high AUC 0·990 (95% CI 0.972-1.000), sensitivity (98.75%), and specificity (95%). We also found that Pmodel−II and Pmodel−III demonstrates 100% sensitivity and specificity (AUC 1·00; 95%CI:1·00–1·00) and could distinguish eclipse stage and acute stage of HIV-1 infection from healthy controls respectively. Antiretroviral treatment (ART) cumulatively restored the levels of lncRNAs to healthy controls levels.ConclusionlncRNA expression changes significantly in response to HIV-1 infection. Our findings also highlight the potential of using circulating lncRNAs to detect both the eclipse and acute stages of HIV-1 infection, which may help to shorten the window period and facilitate early detection and treatment initiation. Initiating ART treatment at this stage would significantly reduce HIV-1 transmission. The differentially expressed lncRNAs identified in this study could serve as potential prognostic and diagnostic biomarkers of HIV-1 infection, as well as new therapeutic targets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.