Abstract
The G(2) checkpoint is an indispensable pathway for cancers lacking p53 function, for delaying cell cycle progression, and for completing DNA repair. Therefore, disruption of this pathway is expected to offer selective therapy for these highly prevalent cancers. The aim of this study was to identify an inhibitor of the G(2) checkpoint including the ataxia-telangiectasia-mutated and Rad3-related checkpoint kinase 1 pathway that selectively suppresses the growth of p53-deficient cells. To obtain molecules with a novel mechanism of action, we constructed a high-throughput screening system that detected abrogation of the G(2) checkpoint in X-irradiated HT-29 cells. The screening resulted in identification of a guanidine analog, CBP-93872 that dose dependently inhibited the G(2) checkpoint induced by DNA damage. Interestingly, CBP-93872 directly suppressed the growth of p53-mutated cancer cell lines with wild-type CDKN2A by eliciting G(1) arrest, but not CDKN2A-deleted and/or wild-type p53 lines. CBP-93872 decreased phospho-cdc2 Y15 by inhibiting phosphorylation of Chk1, but did not suppress phospho-Chk2 or the kinase activities of either Chk1 or Chk2 in cellular or cell-free assays. These results suggest that a checkpoint modulator through suppression of Chk1 phosphorylation provides synthetic lethality to p53-deficient cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.