Abstract
Footprint analysis of the 5'-flanking regions of the alpha-amylase 2, elastase 2, and trypsina genes, which are expressed in the acinar pancreas, showed multiple sites of protein-DNA interaction for each gene. Competition experiments demonstrated that a region from each 5'-flanking region interacted with the same cell-specific DNA-binding activity. We show by in vitro binding assays that this DNA-binding activity also recognizes a sequence within the 5'-flanking regions of elastase 1, chymotrypsinogen B, carboxypeptidase A, and trypsind genes. Methylation interference and protection studies showed that the DNA-binding activity recognized a bipartite motif, the subelements of which were separated by integral helical turns of DNA. The alpha-amylase 2 cognate sequence was found to enhance in vivo transcription of its own promoter in a cell-specific manner, which identified the DNA-binding activity as a transcription factor (PTF 1). The observation that PTF 1 bound to DNA sequences that have been defined as transcriptional enhancers by others suggests that this factor is involved in the coordinate expression of genes transcribed in the acinar pancreas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.