Abstract

IntroductionThe purpose of this study was to verify the expression of the calcium-sensing receptor (CaSR) and its role in mineral trioxide aggregate (MTA)-induced odontoblastic differentiation and mineralization in human dental pulp cells (hDPCs). MethodsThe expression of CaSR in human dental pulp tissue and hDPCs was detected using immunohistochemical and immunofluorescent assays. Then, hDPCs were cultured in specific medium supplemented with defined concentrations of MTA dilute alone or in combination with calcimimetic R-568 (a positive allosteric modulator of CaSR [Tocris Bioscience, Bristol, UK]), and cell viability was monitored by Cell Counting Kit-8 (Dojindo Molecular Technologies, Kumamoto, Japan) analysis. Alkaline phosphatase activity, alizarin red S staining, quantitative real-time polymerase chain reaction, and Western blot were used to investigate the gene/protein expression of odontoblastic-associated markers and CaSR in medium supplemented with different combinations of diluted MTA, R-568, and calcilytic Calhex 231 (a negative allosteric modulator of CaSR [Sigma-Aldrich, St Louis, MO]). ResultsCaSR was slightly expressed in the central pulp tissue, whereas it was strongly expressed in the odontoblast layer, plasma membrane, and cytoplasm of hDPCs. Cell Counting Kit-8 assay indicated maximum cell viability in cultures treated with 1:8 diluted MTA additives. Compared with undifferentiated controls, the cells at the early stage of odontoblastic differentiation exhibited lower CaSR protein expression. The combination of 1:8 diluted MTA with 0.1 and 1.0 μmol/L R-568 led to significantly increased cell vitality but decreased alkaline phosphatase activity and mineralized deposit formation, and this negative effect could be attenuated by 1.0 μmol/L Calhex 231 supplementation. Quantitative polymerase chain reaction results showed a significant up-regulation of RUNX2, DSPP, DMP-1, and OCN gene expression in the 1 μmol/L R-568–treated hDPCs. Western blot analysis indicated that the treatment by MTA and R-568 alone or their combination gave no clear trend on the protein levels of CaSR and dentin sialophosphoprotein, whereas Calhex 231 can increase their expressions. In addition, the up-regulation of Akt phosphorylation was observed in R-568– and Calhex 231–treated hDPCs. ConclusionsOur data indicated that CaSR is expressed in human dental pulp and hDPCs and that it can negatively or positively regulate MTA-induced mineralization of hDPCs via the phosphoinositide 3-kinase/Akt pathway in a ligand-dependent manner, suggesting a therapeutic target for modulating reparative dentin formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.