Abstract

This paper focuses on a state-space based approach for the identification of a rather general nonlinear block-structured model. The model has several Single-Input Single-Output (SISO) static polynomial nonlinearities connected to a Multiple-Input Multiple-Output (MIMO) dynamic part. The presented method is an extension and improvement of prior work, where at most two nonlinearities could be identified. The location of the nonlinearities or their relation to other parts of the model does not have to be known beforehand: the method is a black-box approach, in which no states, internal signals or structural properties need to be measured or known. The first step is to estimate a partly structured polynomial (nonlinear) state-space model from input-output measurements. Secondly, an algebraic approach is used to split the dynamics and the nonlinearities by decomposing the multivariate polynomial coefficients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.