Abstract

Using comparative genomics approaches, we analyzed the regulation of ribonucleotide reductase genes in bacterial genomes. A highly conserved palindromic signal with consensus acaCwAtATaTwGtg, named NrdR-box, was identified upstream of most operons encoding ribonuleotide reductases from three different classes. By correlating the occurrence of NrdR-boxes with phylogenetic distribution of ortholog families, we identified a transcriptional regulator containing Zn-ribbon and ATP-cone motifs (COG1327) for the predicted ribonucleotide reductase regulon. Further characterization of the regulon and metabolic reconstruction of the regulated pathways demonstrated its functional link to replication. The method of simultaneous phylogenetic profiling of genes and conserved regulatory signals introduced in this study could be used to identify transcriptional factors regulating orphan regulons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.