Abstract

Tau, a neuronal microtubule-associated protein (MAP) plays an important role in the formation and maintenance of neuronal polarity. Tau mRNA is a stable message and exhibits a relatively long half-life in neuronal cells. The regulation of mRNA stability is a crucial determinant in controlling mRNA steady-state levels in neuronal cells and thereby influences gene expression. The half-lives of specific mRNAs may be dependent on specific sequences located at their 3'untranslated region (UTR), which in turn, may be recognized by tissue-specific proteins. To identify the sequence elements involved in tau mRNA stabilization, selected regions of the 3'UTR were subcloned downstream to c-fos reporter mRNA or to the coding region of the tau mRNA. Using stably transfected neuronal cells, we have demonstrated that a fragment of 240 bp (H fragment) located in the 3'UTR can stabilize c-fos and tau mRNAs. Analysis of stably transfected cells indicated that the transfected tau mRNAs are associated with the microtubules of neuronal cells, suggesting that this association may play a role in tau mRNA stabilization. This step may be a prerequisite in the multistep process leading to the subcellular localization of tau mRNA in neuronal cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call