Abstract

Aberrantly methylated DNA fragments were searched for in human pancreatic cancers, using the genome scanning technique: methylation-sensitive-representational difference analysis (MS-RDA). MS-RDA isolated 111 DNA fragments derived from CpG islands (CGIs), and 35 of them were from CGIs in the 5' regions of known genes. Methylation-specific PCR (MSP) of the CGIs in seven pancreatic cancer cell lines and two pancreatic ductal epithelial cell lines showed that 27 CGIs in the 5' regions were aberrantly methylated in at least one of the cancer cell lines. Quantitative reverse-transcription-PCR analysis showed that downstream genes of all the CGIs were either not expressed or only very weakly expressed in cancer cell lines with the aberrant methylation. In the pancreatic ductal epithelial cell lines, 18 genes were expressed at various levels, and nine genes were not expressed at all. Treatment of a cancer cell line with a demethylating agent, 5-aza-2'-deoxycytidine, restored the expression of 13 genes, RASGRF2, ADAM23, NEF3, NKX2-8, HAND1, EGR4, PRG2, FBN2, CDH2, TLL1, NPTX1, NTSR1 and THBD, showing their silencing by methylation of their 5' CGIs. MSP of 24 primary pancreatic cancers showed that all these genes, except for THBD, were methylated in at least one cancer. Some of those were suggested to be potentially involved in pancreatic cancer development and progression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.