Abstract
1-Hydroxypyrene glucuronide is identified as the single major aqueous metabolite of the tetracyclic aromatic hydrocarbon pyrene, in tissue from a deposit-feeding marine polychaete, Nereis diversicolor. Identification was performed using an ion trap mass spectrometer fitted with an atmospheric pressure chemical ionization (APCI) probe and connected to a high-performance liquid chromatography/diode array detector (HPLC/DAD) system. Besides 1-hydroxypyrene, the 339-nm UV trace of tissue samples from pyrene-exposed worms showed only one dominant peak that could be related to pyrene metabolism. Negative APCI-MS of this supposed 1- hydroxypyrene conjugate gave a characteristic signal at m/z 429 corresponding to the molecular ion of 1-hydroxypyrene glucuronide plus eluent adducts ([M - H + 2H(2)O](-)). Fragmentation pathways were studied by isolating the abundant ion at m/z 429 in the ion trap and performing multiple mass spectrometric experiments (MS(n)). The fragmentations observed were consistent with the proposed identification. Two low intensity LC peaks that could be related to pyrene metabolism by their DAD absorption spectra were also present in the 339-nm UV chromatogram of tissue samples. However, these peaks could not be identified by their mass spectra in negative ion mode due to ion suppression by very abundant co-eluting impurities. The present method shows that LC/MS(n) is a fast and useful analytical tool for identification of aqueous polycyclic aromatic hydrocarbon biotransformation products in samples from relatively small marine invertebrates with limited sample preparation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.