Abstract

Molecular cloning using a degenerate oligonucleotide-based polymerase chain reaction was undertaken to test the possibility that novel, developmentally regulated protein kinases are expressed in the embryonic mouse kidney. Several receptor tyrosine kinase and serine/threonine kinase cDNA clones were identified. One of these, designated DLK, represented a novel gene product whose 3.6-kilobase transcript was expressed in a tissue-specific and developmentally regulated fashion. Several clones encoding the entire open reading frame were isolated and sequenced. The identified open reading frame encodes an 888-amino acid polypeptide that defines a new subfamily within the mixed lineage protein kinase family. Sequence analysis revealed: 1) a kinase catalytic domain most characteristic of serine/threonine kinases but hybrid between members of the family of microtubule-associated protein kinase kinase kinases and the fibroblast growth factor receptor family; 2) two putative alpha-helical leucine zipper motifs separated by a 25-amino acid charged intermediate segment but lacking an NH2-terminal basic domain; and 3) COOH-terminal and NH2-terminal proline-rich domains suggestive of src homology 3 (SH3) domain binding regions. Rabbit polyclonal immune sera generated against a carboxyl-terminal bacterial fusion protein recognized a protein with an apparent molecular mass of 130 kDa in COS 7 cells that were transiently transfected with a full-length DLK cDNA expression vector. Moreover, COS 7 cells transiently transfected with an epitope-tagged DLK expression vector expressed protein with an apparent molecular mass of 130 kDa that became autophosphorylated on serine and threonine in an in vitro kinase assay.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.