Abstract

This paper proposes a novel system identification scheme to obtain a MIMO model of ship maneuvering motion, which can leverage the temporal correlation from the constructed training data to learn the underlying feasible model robust to extraneous noise. The scheme is based on long–short-term-memory (LSTM) deep neural network, which is more easily trained than traditional feedforward neural network with more complicated network structure. First, multiple datasets of simulated standard maneuvers (10°/10° and 20°/20° zigzag, 35° turning circle) of a KVLCC2 model are artificially polluted with white noise of various levels and used simultaneously to train the deep neural network model. Meanwhile, the data of 15°/15° zigzag maneuver are used to facilitate the training process to alleviate overfitting problem. Second, different datasets of modified zigzag tests are used to validate the generalization performance and robustness to noise of the trained neural network model. The training and validation results demonstrate that a mapping between the dynamics of ship motion and the computation in LSTM deep neural network is correctly identified. This mapping indicates that the complex nonlinear features of ship maneuvering motion can be learned from the measured temporal data, using standard training techniques for deep neural networks. An equivalent LSTM deep neural network model with better generalization performance and robustness is established, and its accuracy in predicting ship maneuvering motion is validated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.