Abstract

In this paper a system identification technique is developed which is compatible with current robust controller design methodologies. This technique is applicable to a broad class of stable, distributed, linear, shift-invariant systems. The information necessary for the application of this technique consists of a priori estimates on the relative stability and "steady state" gain of the unknown system together with a finite number of possibly corrupt frequency response estimates. Given this information an algorithm is specified which yields both an identified model and explicit H <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">∞</sub> norm error bounds. Several interesting properties of this algorithm are also discussed. Among them, the fact the algorithm is a nonlinear function of the frequency response data, and that it is robustly convergent with respect to the a priori information on relative stability and gain are singled out as characteristics which distinguish this algorithm from others currently under development by the authors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call