Abstract
System identification is a common tool for estimating (linear) plant models as a basis for model-based predictive control and optimization. The current challenges in process industry, however, ask for data-driven modelling techniques that go beyond the single unit/plant models. While optimization and control problems become more and more structured in the form of decentralized and/or distributed solutions, the related modelling problems will need to address structured and interconnected systems. An introduction will be given to the current state of the art and related developments in the identification of linear dynamic networks. Starting from classical prediction error methods for open-loop and closed-loop systems, several consequences for the handling of network situations will be presented and new research questions will be highlighted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.