Abstract

The coding sequence of a peroxidase from the secretome of Pleurotus sapidus was cloned from a cDNA library. Bioinformatic analyses revealed an open reading frame of 1551 bp corresponding to a primary translation product of 516 amino acids. The DyP-type peroxidase was heterologously produced in Trichoderma reesei with an activity of 55,000 U L−1. The enzyme was purified from the culture supernatant, biochemically characterized and the kinetic parameters were determined. The enzyme has an N-terminal signal peptide composed of 62 amino acids. Analysis by Blue Native PAGE and activity staining with ABTS, as well as gel filtration chromatography showed the native dimeric state of the enzyme (115 kDa). Analysis of the substrate range revealed that the recombinant enzyme catalyzes, in addition to the conversion of some classic peroxidase substrates such as 2,2′-azino-bis(3-ethylthiazoline-6-sulfonate) and substituted phenols like 2,6–dimethoxyphenol, also the decolorization of the anthraquinonic dye Reactive Blue 5. The enzyme also catalyzes bleaching of natural colorants such as β-carotene and annatto. Surprisingly, β-carotene was transformed in the presence and absence of H2O2 by rPsaDyP, however enzyme activity was increased by the addition of H2O2. This indicates that the rPsaDyP has an oxidase function in addition to a peroxidase activity. As a consequence of the high affinity to the characteristic substrate Reactive Blue 5 the rPsaDyP belongs functionally to the dyp-type peroxidase family.

Highlights

  • Heme peroxidases have been classified into various superfamilies according to their functional and structural properties (Morgenstern et al 2008)

  • This class includes the secretory fungal peroxidases and is characterized by a wide homogeneity; for example the manganese peroxidases (MnP), lignin peroxidases (LiP) and the versatile peroxidases (VP) all belong to this class (Lundell et al 2010; Martíınez 2002)

  • The translated amino acid sequence shows a high degree of identity (95%) to a DyP-type peroxidase from Pleurotus ostreatus (ID EMBL CAK55151.1)

Read more

Summary

Introduction

Heme peroxidases have been classified into various superfamilies according to their functional and structural properties (Morgenstern et al 2008). According to the classification of Welinder (1992) DyP-type peroxidases were assigned to Class II of the plant-peroxidase superfamily. This class includes the secretory fungal peroxidases and is characterized by a wide homogeneity; for example the manganese peroxidases (MnP), lignin peroxidases (LiP) and the versatile peroxidases (VP) all belong to this class (Lundell et al 2010; Martíınez 2002). In the meantime DyP-type peroxidases have been discovered in Basidiomycota, and in Ascomycetes and bacteria (Hofrichter et al 2010). This implies that these peroxidases have a common origin before the division of the domains (Sugano 2009). A subdivision of the peroxidases into three groups (P, I, V) has recently been suggested for the classification of DyP-type peroxidases (Yoshida and Sugano 2015)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call