Abstract

Brucellosis is a highly contagious zoonosis worldwide with economic and public health impacts. The aim of the present study was to identify Brucella (B.) spp. isolated from animal populations located in different districts of Egypt and to determine their antimicrobial resistance. In total, 34-suspected Brucella isolates were recovered from lymph nodes, milk, and fetal abomasal contents of infected cattle, buffaloes, sheep, and goats from nine districts in Egypt. The isolates were identified by microbiological methods and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Differentiation and genotyping were confirmed using multiplex PCR for B. abortus, Brucella melitensis, Brucella ovis, and Brucella suis (AMOS) and Bruce-ladder PCR. Antimicrobial susceptibility testing against clinically used antimicrobial agents (chloramphenicol, ciprofloxacin, erythromycin, gentamicin, imipenem, rifampicin, streptomycin, and tetracycline) was performed using E-Test. The antimicrobial resistance-associated genes and mutations in Brucella isolates were confirmed using molecular tools. In total, 29 Brucella isolates (eight B. abortus biovar 1 and 21 B. melitensis biovar 3) were identified and typed. The resistance of B. melitensis to ciprofloxacin, erythromycin, imipenem, rifampicin, and streptomycin were 76.2%, 19.0%, 76.2%, 66.7%, and 4.8%, respectively. Whereas, 25.0%, 87.5%, 25.0%, and 37.5% of B. abortus were resistant to ciprofloxacin, erythromycin, imipenem, and rifampicin, respectively. Mutations in the rpoB gene associated with rifampicin resistance were identified in all phenotypically resistant isolates. Mutations in gyrA and gyrB genes associated with ciprofloxacin resistance were identified in four phenotypically resistant isolates of B. melitensis. This is the first study highlighting the antimicrobial resistance in Brucella isolated from different animal species in Egypt. Mutations detected in genes associated with antimicrobial resistance unravel the molecular mechanisms of resistance in Brucella isolates from Egypt. The mutations in the rpoB gene in phenotypically resistant B. abortus isolates in this study were reported for the first time in Egypt.

Highlights

  • Brucellosis is considered as a common bacterial zoonotic disease of high prevalence in countries of the Middle East and the Mediterranean region, as well as some parts of Central and South America, Africa, and Asia [1,2]

  • Based on microbiological and biochemical characteristics, 21 strains were typed as B. melitensis biovar 3, eight strains were B. abortus biovar 1 and five samples were identified as Achromobacter species (Table 1)

  • The disease is endemic in Egypt and B. melitensis and B. abortus have been reported as the main causative agents of brucellosis in humans and animals

Read more

Summary

Introduction

Brucellosis is considered as a common bacterial zoonotic disease of high prevalence in countries of the Middle East and the Mediterranean region, as well as some parts of Central and South America, Africa, and Asia [1,2]. Brucellosis is caused by bacteria of various species of the genus Brucella (B.) that are genetically highly related [3,4]. Brucella is a Gram negative, facultative intracellular pathogen classically causing infections in sheep and goats (B. melitensis), rams (B. ovis), bovines (B. abortus), canines (B. canis), pigs (B. suis), and rodents (B. neotomae) [5,6]. The cross infection of animal species with brucellae has been reported [8]. Brucellosis in livestock is causing high economic losses to livestock industry due to poor health, debility and loss of quality livestock products [9]. Brucellosis causes severe acute febrile illness that becomes chronic if left untreated [10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call