Abstract

BackgroundFire ant venom is a complex mixture consisting of basic piperidine alkaloids, various biologically active peptides and protein components, including a variety of major allergenic proteins. Tropical fire ant Solenopsis geminata is an important stinging ant species that causes anaphylaxis and serious medical problems. Although the biological activities of allergenic venom proteins that are unique to ant venom, particularly Solenopsis 2 and 4, are still unknown, these proteins are believed to play important roles in mediating the effects of the piperidine derivatives in the venom.MethodsIn the present study, the cDNA cloning, sequencing and three-dimensional structure of Sol g 4.1 venom protein are described. The recombinant Sol g 4.1 protein (rSol g 4.1) was produced in E. coli, and its possible function as a hydrophobic binding protein was characterized by paralyzing crickets using the 50% piperidine dose (PD50). Moreover, an antiserum was produced in mice to determine the allergenic properties of Sol g 4.1, and the antiserum was capable of binding to Sol g 4.1, as determined by Western blotting.ResultsThe molecular weight of Sol g 4.1 protein is 16 kDa, as determined by SDS-PAGE. The complete cDNA is 414 bp in length and contains a leader sequence of 19 amino acids. The protein consists of six cysteines that presumably form three disulfide bonds, based on a predicted three-dimensional model, creating the interior hydrophobic pocket and stabilizing the structure. The rSol g 4.1 protein was expressed in inclusion bodies, as determined by SDS-PAGE. Dialysis techniques were used to refold the recombinant protein into the native form. Its secondary structure, which primarily consists of α-helices, was confirmed by circular dichroism analysis, and the three-dimensional model was also verified. The results of allergenic analysis performed on mice showed that the obtained protein was predicted to be allergenically active. Moreover, we report on the possible role of the Sol g 4.1 venom protein, which significantly reduced the PD50 from 0.027 to 0.013% in paralyzed crickets via synergistic effects after interactions with piperidine alkaloids.ConclusionsThe primary structure of Sol g 4.1 showed high similarity to that of venom proteins in the Solenopsis 2 and 4 family. Those proteins are life-threatening and produce IgE-mediated anaphylactic reactions in allergic individuals. The possible function of this protein is the binding of the interior hydrophobic pockets with piperidine alkaloids, as determined by the analysis of the structural model and PD50 test.

Highlights

  • Fire ant venom is a complex mixture consisting of basic piperidine alkaloids, various biologically active peptides and protein components, including a variety of major allergenic proteins

  • The majority of fire ant venom consists of 90–95% basic piperidine alkaloids, which are produced in the venom glands, stored in the poison sac and dispensed through the stinging apparatus [7, 8]

  • The Sol g 4.1 protein exhibited 21% identity to the hydrophobic ligand-binding proteins from the pheromone-binding protein/odorant-binding protein (PBP/OBP) family, which is normally composed of proteins with molecular weights of 12–16 kDa

Read more

Summary

Introduction

Fire ant venom is a complex mixture consisting of basic piperidine alkaloids, various biologically active peptides and protein components, including a variety of major allergenic proteins. The biological activities of allergenic venom proteins that are unique to ant venom, Solenopsis 2 and 4, are still unknown, these proteins are believed to play important roles in mediating the effects of the piperidine derivatives in the venom. The alkaloids are mainly hydrophobic piperidines composed of different combinations of the same 2,6-dialkylpiperidines [9]. These alkaloids function primarily in defense, colony hygiene, and food procurement and have physiological functions such as histamine-releasing, antibacterial, antifungal, insecticidal, phytotoxic and hemolytic properties [10,11,12,13]. The alkaloid causes the formation of the characteristic pustule, burning sensation and sterile necrotic lesions at the site of envenomation [14]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call