Abstract

Substance P and CGRP play a central role in neuropathic pain development and maintenance. Additionally, dynorphin A is an endogenous ligand of opioid receptors implicated in the modulation of neurotransmitters including neuropeptides, such as substance P and CGRP. This manuscript proposes a method to characterize, identify and quantify substance P, CGRP and dynorphin A in rat spinal cord by HPLC-ESI/MS/MS. Rat spinal cords were collected and homogenized into a TFA solution. Samples were chromatographed using a microbore C(8) 100 x 1 mm column and a 19 min linear gradient (0:100 --> 40:60; ACN:0.2% formic acid in water) at a flow rate of 75 microL/min for a total run time of 32 min. The peptides were identified in rat spinal cord based on full-scan MS/MS spectra. Substance P, CGRP and dynorphin A were predominantly identified by the presence of specific b CID fragments. Extracted ion chromatogram (XIC) suggested selected mass transitions of 674 --> [600 + 254], 952 --> [1215 + 963] and 717 --> [944 + 630] for substance P, CGRP and dynorphin A can be used for isolation and quantitative analysis. A linear regression (weighted 1/x) was used and coefficients of correlations (r) ranging from 0.990 to 0.999 were observed. The precision (%CV) and accuracy (%NOM) observed were 10.9-14.4% and 8.9-14.2%, 8.8-13.0% and 91.0-110.2% and 97.2-107.3% and 91.8-97.3% for substance P, CGRP and dynorphin A respectively. Following the analysis of rat spinal cords, the mean endogenous concentrations were 110.7, 2541 and 779.4 pmol/g for substance P, CGRP and dynorphin A respectively. The results obtained show that the method provides adequate figures of merit to support targeted peptidomic studies aimed to determine neuropeptide regulation in animal neuropathic and chronic pain models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.