Abstract
The insulin/insulin-like growth factor signaling (IIS) pathway is well-known in regulation of cell growth and proliferation in vertebrates, while its role in invertebrates such as mollusks remains largely unknown. In this study, we performed an extensive multi-omics data mining and identified four insulin-like peptide genes, including ILP, MIRP3, MIRP3-like and ILP7, in the Pacific oyster, Crassostrea gigas. Their potential roles in growth regulation were further investigated using the selectively bred fast-growing C. gigas variety "Haida No.1". Expression profiling and in situ hybridization of these insulin-like peptides suggested their distinct tissue-specific expression pattern, with dominant expression in the neural enrichment tissues such as labial palp, visceral ganglia, adductor muscle, and digestive gland. The expressions of insulin-like peptides were significantly altered by food abundance in a gene-specific fashion. The expression of ILP was reduced during fasting and increased after re-feeding, the expressions of MIRP3 and ILP7 were generally induced during fasting and down-regulated after re-feeding, while the expression of MIRP3-like was firstly up-regulated and then down-regulated during the fasting and re-feeding process. Furthermore, the expressions of all four insulin-like peptide genes were significantly suppressed at low temperature, in accordance with the growth inhibition. These results indicated that all four insulin-like peptides would play critical but different roles in regulation of growth in the oysters. This work provides valuable information for further investigation on growth regulation mechanism in mollusks and molecular assisted breeding of growth with other production traits in the Pacific oyster.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.