Abstract

The green microalga Chlorella vulgaris can be induced to rapidly accumulate oil (40% by dry weight) with a biodiesel profile that is high in saturated and monounsaturated fatty acids. In this study, we sequenced the diacylglycerol acyltransferase type-1 from C. vulgaris (CvuDGAT1), which catalyzes the last step in triacylglycerol (TAG) biosynthesis, and characterized this protein using bioinformatics and functional expression assays in a yeast mutant. The CvuDGAT1 protein (460aa) shares motifs characteristic of other plant and microalga DGAT1s, including the binding domains for the acyl-CoA and diacylglycerol substrates and the putative active site. In addition, we report the first putative tertiary structure of DGAT1. This model shows that CvuDGAT1 is integrated into the ER membrane and predicts the proximity of the substrate-binding domains and the active site, despite being widely separated in the protein sequence. We also demonstrate CvuDGAT1's function in TAG biosynthesis by expressing the gene and restoring oil levels in a non-oil-producing yeast mutant. Interestingly, unlike Chlamydomonas reinhardtii, the CvuDGAT1 gene is constitutively expressed at high levels and may contribute to this species' ability to accumulate high levels of oil (i.e. 40% by dry weight).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.