Abstract

BackgroundMembers of the transient receptor potential (TRP) superfamily are proteins that are critical for insects to detect changes in environmental stimuli and also play key roles in their sensory physiology. Moreover, this family provides potential targets for the design of insecticides. In contrast to a large number of studies conducted on Drosophila melanogaster, molecular studies to characterize TRP channels in agricultural pests are lacking.ResultsIn this study, we identified 15 TRP channel genes in the genome of a notorious agricultural pest, the oriental fruit fly (Bactrocera dorsalis). Comparative analysis of the TRP channels (TRPs) in B. dorsalis with those in D. melanogaster, Glossina morsitans, Musca domestica and the closely related Ceratitis capitata, and TRPs from mosquitoes, Hymenoptera, Lepidoptera, Coleoptera and Hemiptera reveals that members of TRPA and TRPP subfamily are most diverse among insects. The results also suggest that Tephritidae family have two TRP-Polycystin 2 members even though most insects either possess just one or none. The highest expression levels of these two genes are in the testes of B. dorsalis, implying a role in regulating sperm function. We analyzed the expression profiles of the TRP channels identified in this study at different life stages using quantitative real time PCR. The results of this study demonstrate that all TRP channels are mainly expressed in adults, especially at mature stages. The one exception to this trend is BdTRPM, which is more highly expressed in the eggs of B. dorsalis, implying an important role in early development. We also detected the spatial expression of TRP channels in mature adult fruit flies by investigating expression levels within various tissues including those involved in sensory function, such as antennae, compound eyes, mouthparts, legs, and wings, as well as tissues critical for homeostasis and physiology (i.e., Malpighian tubules, the brain and gut as well as fat bodies, ovaries, and testes).ConclusionThe results of this study establish a solid foundation for future functional characterization of B. dorsalis TRP channels as well as those of other insects and will help future insecticide design targeting these channels.

Highlights

  • Members of the transient receptor potential (TRP) superfamily are proteins that are critical for insects to detect changes in environmental stimuli and play key roles in their sensory physiology

  • Su et al BMC Genomics (2018) 19:674 sequence homology, TRP-Canonical (TRPC), TRP-Ankyrin (TRPA), TRP-No mechanoreceptor potential C (TRPN), TRP-Vanilloid (TRPV), TRP-Melastatin (TRPM), TRPMucolipin (TRPML), and TRP-Polycystin (TRPP) [1, 2]. These seven subfamilies are themselves broadly divided into two groups with TRPC, TRPA, TRPN, TRPV, and TRPM classified as group 1 TRPs because they share the most sequence similarity with the founding member of this superfamily, Drosophila TRP

  • Identification, sequence analysis, and splice variants of TRP channels in B. dorsalis We identified 15 TRP channel genes in B. dorsalis that share homology with known Drosophila TRP channel sequences

Read more

Summary

Introduction

Members of the transient receptor potential (TRP) superfamily are proteins that are critical for insects to detect changes in environmental stimuli and play key roles in their sensory physiology. Transient receptor potential (TRP) superfamily proteins are six transmembrane domain cationic channels with some calcium permeability, implicated in many cellular functions [1] This superfamily, whose members are found in all animals, can be activated by a variety of mechanisms and play critical roles in sensory physiology. Su et al BMC Genomics (2018) 19:674 sequence homology, TRP-Canonical (TRPC), TRP-Ankyrin (TRPA), TRP-No mechanoreceptor potential C (TRPN), TRP-Vanilloid (TRPV), TRP-Melastatin (TRPM), TRPMucolipin (TRPML), and TRP-Polycystin (TRPP) [1, 2] These seven subfamilies are themselves broadly divided into two groups with TRPC, TRPA, TRPN, TRPV, and TRPM classified as group 1 TRPs because they share the most sequence similarity with the founding member of this superfamily, Drosophila TRP. Previous research has demonstrated the presence of a diverse range of TRP superfamily members amongst insect species [9]; if the Brv genes are not counted, most insects possess between 13 and 14 TRP components, approximately half the number in mammals [10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call