Abstract

AimsTo explore immune cell infiltration characteristics of, and hub genes associated with, hypertrophic cardiomyopathy (HCM). Materials and methodsThe GSE130036 dataset was downloaded and the differentially expressed genes (DEGs) were identified. The DEGs were analyzed via the CIBERSORT algorithm to understand the composition of 22 immune cell types between the HCM and normal myocardial tissue specimens. Weighted gene co-expression network analysis (WGCNA) was performed to segregate the DEGs into several modules and explore correlation between the key modules and specific immune cells enriched in the myocardial tissues of HCM patients. The biofunctional and disease enrichment of the genes among the modules was explored, and hub genes serving as potential biomarkers of HCM were identified. These genes were validated by GSE36961 dataset, and the discrimination ability was assessed by receiver operating characteristic curve analysis. Key findingsCIBERSORT analysis showed that neutrophils and B-cells (naive and memory B-cells) were highly abundant in HCM samples, while macrophages (M0, M1, M2) were highly abundant in normal samples. WGCNA analysis of the DEGs yielded seven modules, and the gray and yellow modules were strongly associated with neutrophils and B-cells, and with macrophages, respectively. Yellow module genes were mainly functional in immune and inflammation processes. Gray module genes were mainly functional in the transportation of intercellular substances. SLITRK4 and CD163 showed a notably high area under the curve values in both datasets and may serve as potential biomarkers for HCM. SignificanceSLITRK4 and CD163 may be promising Diagnostic Biomarkers of Hypertrophic Cardiomyopathy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call