Abstract
As a foundation to enhance the machining accuracy of five-axis machine tools, a robust, efficient, and precise method to measure the location errors of rotary axes on five-axis machine tools has been proposed in this study. This precise identification and calibration methodology for on-machine measurement of location errors of rotary axes is achieved by using a touch-trigger probe and a precise sphere installed on a tilting rotary table. Compared to commercially available devices, such as the double ball bar and R-test, the proposed measurement method has the advantages of efficient and automated calibration procedures in each periodical measurement. This proposed calibration algorithm builds a kinematic error model and measurement equations by using a forward and inverse kinematic approach and estimates the location errors by applying the least squares method. Moreover, the proposed calibration algorithm defines the location errors of the two rotary axes so they can be estimated and separated individually to avoid coupling effects. All the location errors of the rotary axes measured using the proposed measurement method were identified after compensation to improve the accuracy of the five-axis machine tool. A simulation was implemented to inspect the influence of uncertainties on the identified location errors of the rotary axes. Finally, an experimental demonstration on a five-axis machine tool with a tilting rotary table validates the feasibility of the proposed measurement method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.